Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 3(8): e625-e637, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036970

RESUMO

Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host-virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.


Assuntos
COVID-19 , Quirópteros , Vírus , Animais , COVID-19/epidemiologia , SARS-CoV-2 , Filogenia
2.
Nat Microbiol ; 6(12): 1483-1492, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819645

RESUMO

Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.


Assuntos
Interações Hospedeiro-Patógeno , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Humanos , Viroses/fisiopatologia , Vírus/genética , Zoonoses/fisiopatologia , Zoonoses/virologia
3.
Curr Microbiol ; 78(9): 3526-3540, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318342

RESUMO

Microbiota perform vital functions for their mammalian hosts, making them potential drivers of host evolution. Understanding effects of environmental factors and host characteristics on the composition and biodiversity of the microbiota may provide novel insights into the origin and maintenance of these symbiotic relationships. Our goals were to (1) characterize biodiversity of oral and rectal microbiota in bats from Puerto Rico; and (2) determine the effects of geographic location and host characteristics on that biodiversity. We collected bats and their microbiota from three sites, and used four metrics (species richness, Shannon diversity, Camargo evenness, Berger-Parker dominance) to characterize biodiversity. We quantified the relative importance of site, host sex, host species-identity, and host foraging-guild on biodiversity of the microbiota. Microbe biodiversity was highly variable among conspecifics. Geographical location exhibited consistent effects, whereas host sex did not. Within each host guild, host species exhibited consistent differences in biodiversity of oral microbiota and of rectal microbiota. Oral microbe biodiversity was indistinguishable between guilds, whereas rectal microbe biodiversity was significantly greater in carnivores than in herbivores. The high intraspecific and spatial variation in microbe biodiversity necessitate a relatively large number of samples to statistically isolate the effects of environmental or host characteristics on the microbiota. Species-specific biodiversity of oral microbiota suggests these communities are structured by direct interactions with the host immune system via epithelial receptors. In contrast, the number of microbial taxa that a host gut supports may be driven by host diet-diversity or composition.


Assuntos
Quirópteros , Microbiota , Animais , Biodiversidade , Dieta , Hispânico ou Latino , Humanos , Porto Rico
4.
PLoS Comput Biol ; 17(3): e1008811, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657095

RESUMO

Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.


Assuntos
Reservatórios de Doenças/virologia , Febre Lassa , Vírus Lassa , Modelos Biológicos , África Ocidental , Animais , Animais Selvagens/virologia , Biologia Computacional , Ecologia , Humanos , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Febre Lassa/veterinária , Febre Lassa/virologia , Aprendizado de Máquina , Modelos Estatísticos , Risco , Roedores/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...